Approximating Connected Facility Location with Lower and Upper Bounds via LP Rounding

نویسندگان

  • Zachary Friggstad
  • Mohsen Rezapour
  • Mohammad R. Salavatipour
چکیده

We consider a lowerand upper-bounded generalization of the classical facility location problem, where each facility has a capacity (upper bound) that limits the number of clients it can serve and a lower bound on the number of clients it must serve if it is opened. We develop an LP rounding framework that exploits a Voronoi diagram-based clustering approach to derive the first bicriteria constant approximation algorithm for this problem with non-uniform lower bounds and uniform upper bounds. This naturally leads to the the first LP-based approximation algorithm for the lower bounded facility location problem (with non-uniform lower bounds). We also demonstrate the versatility of our framework by extending this and presenting the first constant approximation algorithm for some connected variant of the problems in which the facilities are required to be connected as well. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

15th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2016, June 22-24, 2016, Reykjavik, Iceland

We consider a lowerand upper-bounded generalization of the classical facility location problem, where each facility has a capacity (upper bound) that limits the number of clients it can serve and a lower bound on the number of clients it must serve if it is opened. We develop an LP rounding framework that exploits a Voronoi diagram-based clustering approach to derive the first bicriteria consta...

متن کامل

On the Factor Revealing LP Approach for Facility Location with Penalties

We consider the uncapacitated facility location problem with (linear) penalty function and show that a modified JMS algorithm, combined with a randomized LP rounding technique due to Byrka-Aardal [1], Li [14] and Li et al. [16] yields 1.488 approximation, improving the factor 1.5148 due to Li et al. [16]. This closes the current gap between the classical facility location problem and this penal...

متن کامل

A Non-linear Integer Bi-level Programming Model for Competitive Facility Location of Distribution Centers

The facility location problem is a strategic decision-making for a supply chain, which determines the profitability and sustainability of its components. This paper deals with a scenario where two supply chains, consisting of a producer, a number of distribution centers and several retailers provided with similar products, compete to maintain their market shares by opening new distribution cent...

متن کامل

A Systematic Approach to Bound Factor Revealing LPs and Its Application to the Metric and Squared Metric Facility Location Problems

A systematic technique to bound factor-revealing linear programs is presented. We show how to derive a family of upper bound factor-revealing programs (UPFRP), and that each such program can be solved by a computer to bound the approximation factor. Obtaining an UPFRP is straightforward, and can be used as an alternative to analytical proofs, that are usually very long and tedious. We apply thi...

متن کامل

Fault-Tolerant Facility Location: A Randomized Dependent LP-Rounding Algorithm

We give a new randomized LP-rounding 1.725-approximation algorithm for the metric Fault-Tolerant Uncapacitated Facility Location problem. This improves on the previously best known 2.076-approximation algorithm of Swamy & Shmoys. To the best of our knowledge, our work provides the first application of a dependent-rounding technique in the domain of facility location. The analysis of our algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016